
Database Design with MySQL Workbench
A Round Trip Software Engineering Case

Jerzy Letkowski

Prerequisites - Downloads
• MySQL Server and MySQL Workbench are expected to be installed. The setup program(s) can be

downloaded from the MySQL Website.

• This instruction uses the server and workbench installed using the July 5, 2018 installer, downloaded from
http://www.mysql.com/:

➢ Tab: Downloads (GA)

➢ [Scroll Down] MySQL Community Edition (GPL):
Community (GPL) Downloads »

➢ MySQL Community Server (GPL)

➢ Windows (x86, 32, 64-bit), MySQL Installer MSI : Go to Download Page

➢ [Scroll Down] Windows (x86, 32-bit), MSI Installer 8.0.11 230.0M

➢ No thanks, just start my download.

• The mysql-installer-community-8.0.11.0.msi version was available, at the time of writing this instruction.

• Other major operating systems are also supported, including Mac OS X and Linux.

Download

http://www.mysql.com/

Prerequisites - Installation

• Using the standard Window installer is pretty straight forward. Just follow
the default developer's options.

• It is very important that you do not forget the root password.

• When done, follow the remaining slides to learn more about database
design and implementation, using MySQL Workbench and Community
Server.

You can start MySQL
Workbench by using
Windows search for MySQL
and picking it from the list.

Click the Models icon to open the data modeling facility.

The front page of the MySQL Workbench program shows the initial (root)
connection , the Models' interface.

Click the Models + icon in order to create a new relational database model.

Double-click the default schema (database) name tab (mydb) in order to
create a new database name.

Type name election,
and double-click the Add Diagram icon.

The Toolbar contains graphical tools that are used to paint Enhanced Entity Relationship
Diagrams (EERDs).

MySQL Workbench opens the Diagram canvas along with other useful panels,
including the Birds Eye view panel, and Catalog Tree panel.

Basic Tools:
Table
Relationships:
1:1 (One-to-One) Non-identifying
1:n (One-to-Many) Non-identifying
1:1 (One-to-One) Identifying
1:n (One-to-Many) Identifying
n:m (Many-to-Many) Identifying
1:n (One-to-Many) Using Existing Columns

Problem Statement
A Database for an Online Voting System

Our mission is to design a database for an on-line election system that will be utilized to
conduct election of new leaders of a non-profit organization. The organization has
members some of which hold leadership positions (president, vice president, treasurer,
newsletter editor, annual meeting coordinator, secretary, etc.). Some of the members
have been nominated to run for the positions. Assume that they have already accepted
their nominations, thus becoming official candidates for the available positions. The
organization’s statute states that each candidate may only run for one position and
each member may cast no more than one vote for each of the positions. The database
should facilitate the voting process and record all votes assigned to the candidates but
it should not tell which member has voted for which candidate.

Entities

From the problem definition one could identify the following base entities:
• Member: a list (set) of members of the organization, some of whom are candidates;
• Office: a list of positions ('president', 'treasurer', 'editor', etc.);
Other entities result from associations between the base entities.

Our mission is to design a database for an on-line election system that will be utilized to conduct election of new leaders of a non-
profit organization. The organization has members some of which hold leadership positions (president, vice president, treasurer,
newsletter editor, annual meeting coordinator, secretary, etc.). Some of the members have been nominated to run for the
positions. Assume that they have already accepted their nominations, thus becoming official candidates for the available positions.
The organization’s statute states that each candidate may only run for one position (office) and each member may cast no more
than one vote for each of the positions. The database should facilitate the voting process and record all votes assigned to the
candidates but it should not tell which member has voted for which candidate.

To add entity (table) Member to the data model (EER diagram) click the New Table
icon.

Entity Member

Next click anywhere on the Diagram canvas.

In order to change the name of the table and add its attributes,
double-click table table1.

MW (MySQL Workbench) inserts the
new table named as table1. This
table is supposed to become the
Member table.

Type name Member.

Add column name mid
as (Datatype) INT.

Set column mid as the
Primary Key (PK).

Add other columns:
firstName as VARCHAR(45),
lastName as VARCHAR(90),
pass as CHAR(12),
email as VARCHAR(90).

Notice that the primary key is automatically set as Not NULL (NN). Data types INT, VARCHAR and
CHAR stand for an integer, a variable-length string (text) and a fixed-length string, respectively.

When done, close the Member - Table definition panel.

Some individual have hard time of visualizing abstract entities. The attached Excel macro-workbook,
election.xlsm, contains different depictions of the entities.

Each worksheet shows three representations for each of the election-database entities: ERD (UML),
SQL and Excel Table.

The election.xlsm workbook also contains a macro-function,

sqlInsert(table_name_abs_ref,data_type_abs_ref,record_ref),

that transforms rows of the tables into their SQL-Insert statements. In order to facilitate this
function, a row with "high-level" data types is added (right above the column names), where n stands
for numeric and c—nonnumeric.

Note that the last part of this instruction shows how to transform the ERD view into the SQL
statements. Typically, when designing a new database, the SQL representations are not available
until the ERD model is completed and transformed to it. At this point, SQL (Structured Query
Language) may be somewhat mysterious (it will be explored in detail later). Suffice to say, it is the
official language for managing relational database systems. It is shown here for completeness.

http://quantlabs.com/db/design/election.xlsm

The Member worksheet of the election.xlsm workbook shows three views of the
Member entity: UML, SQL Schema, SQL Data, and Excel Table.

The sqlInsert() function transforms the rows of the Excel Table into SQL-
Insert statements.

CREATE TABLE Member

(

mid int primary key,

firstName varchar(45) NOT NULL,

lastName varchar(90) NOT NULL,

pass char(12) NOT NULL,

email varchar(90)

);

To add entity (table) Office to the data model (EER diagram) click the New
Table icon.

Entity Office

Change the name of this table
to Office.

Add column oid as INT
and PK.

Add column title as
VARCHAR(45).

When done, close
the Office – Table
definition panel.

CREATE TABLE Office

(

oid int primary key,

title varchar(50) NOT NULL

);

The Office worksheet of the election.xlsm workbook shows three views of each of the
Office entity: UML, SQL Schema, SQL Data, and Excel Table.

The sqlInsert() function transforms the rows of the Excel Table into SQL-Insert
statements.

http://quantlabs.com/db/design/election.xlsm

This instruction shows how to develop an EER diagram (ERD) in which relationships are modeled
using the UML notation. Make sure that your notation is the same.

Select the following menu options:
Model

Relationship Notation,
UML.

To add a relationship between entities Member and Office, click the m:n Identifying
Relationship button.

Notice that m:n stands for Many-to-Many. Since a member (instance of entity Member) participates in election of
many offices (positions) and a given office (instance of entity Office) is being elected by many members, this is a Many-
to-Many relationship.
Note: Despite selecting the UML notation, the relationship tools are shown, using the Crow-Foot notation.

In order to customize the Member-has-Office entity, double-click this entity.

MW inserts a new [default] entity, Member-has-Office and sets the relationships of this entity
with Member and Office to Many-to-One. This is a typical resolution of the Many-to-Many
relationships as required by the relational database model.

Notice that the new entity has
received two keys from the
associated entities. Their sources
are the primary keys (mid and
oid) of the base entities. Jointly,
they constitute a [composite]
primary key of the new entity's .
Individually, they are foreign
keys.

Change the name of this entity to Ballot.

Change the names of the
first two columns to:

mid,
oid.

Add a new column (attribute):
ballotPickupTime as DATETIME.

When done, close
the Ballot – Table
definition panel.

Double-click the Member - Ballot link.

Since theoretically there may be members who will not participate in the election of their
representatives (officers), the participation of the Ballot entity in the relationship with entity Member
is optional. The cardinality constraint at the Ballot side should be changed from many-mandatory
(1..*) to many-optional (0..*).

Select the Foreign Key tab and uncheck option Mandatory in the Ballot panel.

When done, close the
Relationship panel.

Double-click the Ballot – Office link.

Since theoretically there may be Office instances (positions) that will not receive any votes (at any
given time), the participation of the Ballot entity in the relationship with entity Office should be
optional. The cardinality constraint at the Ballot side should be changed from many-mandatory (1..*)
to many-optional (0..*).

Select the Foreign Key tab and uncheck
option Mandatory in the Ballot panel.

When done, close
the Relationship panel.

CREATE TABLE Ballot

(

mid int primary key,

oid int NOT NULL,

ballotPickupTime DateTime,

FOREIGN KEY (mid) REFERENCES Member(mid),

FOREIGN KEY (oid) REFERENCES Office(oid)

);

The Ballot worksheet of the election.xlsm workbook shows three views of each of the
Ballot entity: UML, SQL and Excel Table.

The sqlInsert() function transforms the rows of the table into SQL-Insert
statements.

Looking at the relationships between the entities defined, using the primary and
foreign keys, one can see that, for example, 'Ann' (pk: mid=1 in Member) picked her
ballot for the office of 'President' (pk: oid=1 in Office) at ballotPickupTime='2009-10-03
18:32'. In table Ballot, the foreign keys, mid and oid, are set for this relationship to the
values of the primary keys of 'Ann' and 'President', respectively. Jointly, in table Ballot,
the keys mid and oid constitute the primary key.

There is no requirement for a foreign key to have the same name as its related
primary key. Nonetheless, having the same names may simplify documentation
and query development as long as it is clear which are the primary keys and
which are the foreign keys. Some of the SQL queries, involving more than one
related tables can be simplified when the keys have the same names.

Notice that MW has generated the foreign key with names made of the entity
names and their primary-key names (Member_mid and Office_oid) and we
changed them to mid and oid, respectively.

In this instruction, all primary keys and their corresponding foreign keys will
have the same name. Thus, the primary key, mid, of the Member table will
propagate to other entities as a foreign key with the same name (mid). The
primary key, oid, of the Office table, will also have the same name for all related
foreign keys. It will make SQL queries look more slick and compact.

The model developed so far does not include important
individuals: candidates who are running for offices. Each
candidate must be a member (an instance of entity
Member) but only some of the members are candidates
(instances of entity Candidate). The relationship between
Candidate and Member is hierarchical. Candidates inherit
all the attributes from related members. Such a
relationship is modeled in UML as specialization (a
candidate is a specialization of a member) also known as a
Super-type – Sub-type association*. MySQL Workbench
does not support such a notation. However, it supports
this type of the relationship as an One-to-One relationship
with optional participation of the subtype entity (here
Candidate).

Member

Candidate

Member

Candidate

1

0..1

* In an object-oriented language , Member would be a super-class and Candidate—a sub-class. Java would say that
class Candidate extends class Member.

Since there will be more entities and relationships in the model, why don't we rearrange
the entities approximately as shown below.
It can be done by simply dragging the entities around.

Now, click the New Table icon.

Click the diagram canvas to add a table.

Double-click the new table and change its name to Candidate.

When done, close the Candidate – Table panel.

Connect entity Candidate with entity Member using the 1:1 Identifying Relationship tool.

More specifically, first click the 1:1 tool, next click table Candidate and finally click table
Member.

We use the identifying
relationship tool 1:1 since
entity Candidate will be
[uniquely] identified by the
Member's ID (mid).
Each candidate is one and
only one member.
Notice that the identifying
relationship links are shown
as solid lines.

To change the name of the inherited table, double-click entity Candidate and change
column-name Member_mid to mid.

When done, close the Candidate – Table panel.

Notice that the inherited

attribute, mid, serves in

entity Candidate as

both the primary key
and the foreign key.

To change the cardinality constraint at the Candidate entity, first double-click the
Member - Candidate link.

Select the Foreign Key tab and uncheck
option Mandatory in the Candidate panel.

When done, close the Relationship panel.

A One-to-Many relationship is directional. When connecting the related entities, MW
requires that the entity on the Many side be selected (clicked on) prior to selection of
the entity at the One side. The latter maps its primary key to the foreign key of the
former.

The relationship we are about to create is:

Office (1) — is-being-run-for-by — (1..*) Candidate

(In order for an instance of office, e.g. 'President', to be part of the election, there

must be at least one candidate running for it.)

This relationship can also be defined as:

Candidate (1..*) — runs-for — (1) Office

Since an office may have many candidates, it is responsibility of the candidates to
"know" which offices they are running for. Thus each instance of entity Candidate must
include "information" about the office s/he is running for. This information is nothing
else but the foreign key in the Candidate table pointing to the primary key in the
Office table.

Select (click) the Non-identifying One-To-Many Relationship tool.

Now it is a good time to further specialize entity Candidate. What distinguishes a candidate from a
member is that the former is [deterministically] running for an office. Since a candidate may run for
only one office and an office may have many candidates, the appropriate relationship between
Office and Candidate is a One-To-Many (1:n) Non-identifying Relationship.

We use the non-
identifying relationship
tool since entity
Candidate already has a
primary key.

Click the Candidate table and then click the Office table.

MW connects entity Office with entity Candidate with a One-To-Many (1 : 1..*) Non-identifying
Relationship. Notice that this non-identifying relationship link is shown using a dashed line.

Double-click the Candidate table and then change column name
Office_oid to oid.

When done, close the Candidate – Table panel.

CREATE TABLE Candidate

(

mid int primary key,

oid int NOT NULL,

FOREIGN KEY (mid) REFERENCES Member(mid),

FOREIGN KEY (oid) REFERENCES Office(oid)

);

The Candidate worksheet of the election.xlsm workbook shows three views of each of
the Candidate entity: UML, SQL and Excel Table.

The sqlInsert() function transforms the rows of the table into SQL-Insert
statements.

Looking at the relationships between the entities, defined by means of primary and foreign keys, one can see
that, for example, 'Ann' (pk: mid=1 in Member) is a candidate
(pk: mid=1, having fk: mid=1 and oid=4 in Candidate) who is running for office of 'Editor' (pk: oid=4) in Office.
In table Candidate, the foreign keys, mid and oid, are set for this relationship to the values of the primary keys of
'Ann' and 'Editor', respectively. In table Candidate, the key mid plays a dual role. It is both the primary and
foreign key (resulting from an identifying relationship).

Since there will be one more entity and relationship in the model, why don't we
rearrange the entities approximately as shown below.
It can be done by simply dragging the entities around.

When done, click the New Table icon.

Click in the middle of the diagram to place a new table there.

MW adds a new entity (table1) to the diagram.

Double-click the new table.

Change the name of this table to Vote and add column
vid of type INT as a primary key.

When done, close the Vote – Table panel.

Select (click) the 1:n Non-identifying Relationship tool.

Entity Vote serves here are a set of votes cast for the candidates. Since a candidate may get many
votes and each vote is cast exactly for one candidate, Candidate – Vote is a One-to-Many
relationship.

First click the Vote table and
then click the Candidate table.

MW connects entity Candidate with entity Vote with a One-To-Many (1 : 1..*) Non-identifying Relationship. This
relationship needs to be “relaxed” as there may be candidates who will not receive any votes.

Double-click the Candidate - Vote relationship link.

Select the Foreign Key tab and uncheck
option Mandatory in the Candidate panel.

When done, close the Relationship panel.

Change the name of column Candidate_mid to mid.

When done, close the Vote – Table panel.

CREATE TABLE Vote

(

id int primary key auto_increment,

mid int NOT NULL,

FOREIGN KEY (mid) REFERENCES

Candidate(mid)

);

The Vote worksheet of the election.xlsm workbook shows three views of each of the
Vote entity: UML, SQL and Excel Table.

The sqlInsert()function transforms the rows of the table into SQL-Insert
statements.

Examining the relationships between the entities, defined by means of primary and
foreign keys, one can see that, for example, candidate 13 (fk: mid=13 in Candidate)
has received 5 votes (pk: vid=2, 3, 7, 11, 13, with fk: mid=13 in Vote).

The logical phase of the database design is done! It has enough
details (tables, attributes, primary keys, foreign keys and cardinality
constraints) so that it can be transformed into an executable SQL
model. MW can do this transformation via its Forward Engineer
SQL export facility (menu options):

File > Export > Forward Engineer SQL Create Script ...
or

Database > Forward Engineer ...

The following instruction shows how to do it using the latter
command.

Make sure that your EER diagram is saved!

Select menu options Database followed by Forward Engineer.

Use your root connection and click button Next.

Select (check) options Drop Objects Before Each CREATE Object, Generate DROP
SCHEMA, and Generate Separate CREATE INDEX Statements and then click button Next.

Select (check) just one option, Export MySQL Table Objects, and then click button Next.

Save the script to a file, click button Copy to Clipboard, and then click button Next.

MW generates an SQL script, including all statements necessary to create the database, election,
tables (Member, Office, Ballot, Candidate and Vote) as well as indexes of the foreign key for tables
(Ballot, Candidate and Vote).

Click button Close.

MW connects to the server (DBMS) and executes the SQL script. The logical design has just been
transformed [automatically] into a physical database.

Select (click) menu options Database and Connect to Database

Why don't we connect to the election database and add a few records to the tables. The
election.xlsm workbook contains sample Insert statements.

Use the root connection. Type name election for Default Schema and then click button OK.

Expand the election tree in order to reveal the tables.

MW opens a Query panel and reveals all existing databases in the SCHEMAS panel. A full expansion
of the election tree will show more details, including column names.

Select and copy all
the Insert Statements.

Switch to the election.xlsm workbook and
select the Member worksheet.

Switch back to the Query panel in MW and press Ctrl+V, in order to paste the Insert
statements.

With all the Insert statements in the Query panel, click the Execute button.

The Output panel shows feedback for each of the executes statements.

In order to clear the Query panel, select all the Insert statements (press Ctrl+A) and press
the Delete key.

In a similar way, bring the other Insert statements (for tables
Office, Ballot, Candidate and Vote) from the Excel workbook,
election.xlsm , to the MW's Query panel. Execute the
statements and explore the database by running a few
queries.

Type statement SELECT * FROM Office; into the Query panel and click the
Execute button.

After all the sample records have been added, run a few queries. The first example shows all
positions stored in the Office table.

Query result!

Query status!

Type statement
SELECT * FROM Member WHERE mid IN (SELECT mid FROM Candidate);

into the Query panel
and click the Execute button.

The second example shows all the candidates.

The same result can by done by an
explicit JOIN statement:
SELECT * FROM Member JOIN

Candidate USING(mid);

Type statement
SELECT * FROM Member JOIN Candidate USING(mid) JOIN Office USING(oid);

into the Query panel
and click the Execute button.

The third example shows all the candidates and offices they are running for.

Type statement
SELECT mid, lastName FROM Member WHERE mid NOT IN (SELECT mid FROM Ballot);

into the Query panel
and click the Execute button.

The fourth example shows all the members who have not yet picked any of their ballots.

Using an existential query:
SELECT mid, lastName

FROM Member

WHERE NOT EXISTS

(SELECT * FROM Ballot WHERE Ballot.mid=Member.mid);

Type statement
SELECT mid, Count(Ballot.mid) FROM Ballot GROUP BY mid;

into the Query panel
and click the Execute button.

This final example shows the number of positions the members have already voted for.

Notice that one of the members have
picked up only one ballot.

This concludes the Forward Engineering case,
including the logical design and schema
generation, extended by populating the databases
with sample records and running queries. The
remaining slides show how to Reverse Engineer an
existing [physical] database. It is a good time to
save and close MW (MySQL Workbench). Then
start a new instance of MW (a fresh start).

Start MySQL Workbench and select the Data Model option (see slides 4 and 5 for
details).

Click Button > and select the Create EER Model from Database.

Use your root connection and click button Next.

Click button Next.

MW is connecting to the server and retrieving the existing schemas from the DBMS.

Select database election and click button Next.

Click button Next.

Make sure options Import MySQL Table Objects and Place imported objects on a diagram
are selected and click button Execute.

Click button Next.

Click button Finish.

Drag the tables around in order to better organize the diagram.

The table objects are not arranged in a friendly way.

Double-click the Member - Candidate relationship link.

Notice that the diagram is almost identical to the original one (developed manually). The critical
difference is that the relationship between Member and Candidate is shown as One-to-Many
(1:1..*).

Click the Foreign Key tab.
Uncheck the Mandatory option in the Candidate panel.

Turn on the One-to-One (1:1) cardinality option.

When done, close the Relationship panel.

Using similar operations, modify the Member – Ballot, Ballot – Office and Candidate – Vote
relationships. Make sure that the Mandatory participation of entities Ballot and
Vote are turned off so that they will all show up as 0..* (Optional-Many).

A perfectionist would also show the table names in the title case. Finally, save the model and close MW.

This is it!

